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Figure 1: Users first utilize the 
individual screen (top) to 
independently construct their 
preferred sequence, and then the 
collaborative screen (bottom) 
through which they reach a 
consensus with their group. 
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Abstract 
Collaborative Sequencing (CoSeq) is the process by which 
a group selects and arranges a set of items into a particular 
order. CoSeq is ubiquitous, occurring across diverse situa-
tions like trip planning or course scheduling. Although indi-
cating preferences, communicating, and consensus building 
in CoSeq can be overwhelming for groups, little research 
has aimed at effectively supporting this process. To under-
stand the design space of CoSeq, we ran a formative study 
to observe how participants utilize visualizations to strate-
gically reduce their cognitive burden. We derived a novel 
design to enable sequence comparison using visualizations 
and evaluated its effect through a study. We found that at-
titudinal measures for the efficiency and effectiveness of 
the consensus building process were significantly improved 
with our design. 

Introduction 
Collaborative Sequencing (CoSeq) is a type of group decision-
making task where a group must decide on a sequence. 
It is a commonly occurring task across casual and formal 
domains, like travel itinerary planning [18] and curriculum 
planning [25]. In several CoSeq scenarios, members of a 
group are collectively responsible for and affected by the 
resulting outcome—e.g. a group of tourists deciding on an 
itinerary and following it during their travel. In these situa-
tions, it is desirable to build consensus regarding the se-
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List of nodes and edges 
Lists all nodes and edges 
included in any of the 
sequences, with the group 
awareness visualization 
by Hong et al. [14]. 

Merged graph 
Visualizes the sequences 
into one merged graph, 
based on the technique 
by Andrews et al. [3]. 

Adjacency matrix 
Adjacency matrices have 
been demonstrated to be 
effective for the comparison 
of graphs [2]. Sequences 
are a subset of graphs. 

Visualized edit distance 
Visualizes the minimum 
number of modifications 
needed to change a 
sequence into another 
through the edit distance, 
a common method used to 
compare graphs [10] and 
trees [4]. 

Table 1: The visualization 
wireframes were designed by 
applying previous work to support 
sequence comparison. 

quence among the group members [6] so that the entire 
group feels greater satisfaction towards the process [12] 
and the outcome [23]. 

Consensus building can be challenging in CoSeq due to the 
distinct qualities of this type of task. For the group to prop-
erly assess their agreement with a sequence, they need 
to evaluate and discuss each decision involved in creating 
the sequence—specifically, which items to include and the 
particular order between them. Additionally, to adequately 
evaluate each of these decisions, members must have a 
comprehensive understanding of possible alternatives and 
implications of adding or deleting these alternatives. 

Several systems have been previously designed to tackle 
the challenge of assessing multiple decisions and their re-
spective alternatives in sequencing tasks. Among these, 
recommender systems that leverage large-scale data [7, 
8, 15, 21, 24, 18, 9] and crowdsourcing systems that har-
ness human computation [26, 20] have been common ap-
proaches to provide users with item selection and ordering 
recommendations. While these systems were able to sup-
port users’ sequencing processes, they only address the 
sequencing tasks of individuals. Thus, they are unable to 
support the expression of opinions by members in a group 
and the identification of conflicts within these opinions. 
These processes are fundamental to consensus building. 

However, for all members of a group to express their opin-
ions and for others to be aware of these opinions, a signifi-
cant amount of time and effort is necessary [6]. Due to this 
challenge, several tools have been designed to facilitate this 
process and, in turn, support consensus building [1, 19, 27, 
14, 13]. Although these systems were effective at increas-
ing awareness of others’ opinions and facilitating the iden-
tification of conflicts, all of them were designed to support 
tasks that have a single final decision. For example, Hong 

et al. [14] allowed groups to collaborate in the process of fil-
tering through location candidates to facilitate the selection 
of one location for an event, and ConsensUs [16] visualized 
conflicts in opinion to support the process of selecting one 
candidate to admit to an engineering school. In these sys-
tems, the user manually specifies their preferences across 
various criteria. Due to multiple decisions involved in collab-
oratively constructing a sequence, applying this approach 
would result in iteratively specifying and comparing prefer-
ences for each decision independently. This is unsuitable 
because of excessive time and effort. 

An additional challenge of consensus building in CoSeq 
is the detrimental influence that early knowledge of mem-
bers’ preferences can have on other members’ preferences 
and the final outcome. As such, previous work has shown 
that it is preferable for members to initially form their prefer-
ences and opinions independently [17, 22]. However, this 
requires additional effort from group members prior to the 
consensus building process to independently identify and 
document their preferences prior to fuller collaboration and 
then socialize these preferences optimally. 

To address these three challenges—developing prefer-
ences independently, facilitating the awareness of prefer-
ences socially, and enabling conflict identification in a mul-
tiple decision-making scenario like CoSeq—we propose a 
process based on the model introduced by Briggs et al. [5]. 
Our process involves three stages. First, each group mem-
ber individually constructs their preferred sequence. This 
allows members to independently explore alternatives and 
form their preferences. Second, the group compares the 
individually constructed sequences to identify similarities 
and differences. By comparing their sequences, members 
gain awareness of other members’ preferences with respect 
to their own, and can identify conflicts by focusing on the 
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Figure 2: In the sequence space, 
each location added is represented 
in the sequence space by a 
rectangle with the location’s name 
(center) and a unique icon (left) to 
facilitate its recognition. Arrows 
between nodes show the ordering 
of them in the sequence and this 
ordering can be altered by 
drag-and-drop. 

Figure 3: In the map, the user can 
see locations added to the 
sequence, represented as markers 
with the location’s unique icon, and 
lines connecting the markers of 
locations that are adjacent to each 
other in the sequence. 

sequence differences. Third, the group then iteratively re-
solves the identified conflicts through discussion to reach 
consensus on a final sequence. 

To better understand how this process performs in real life, 
we conducted a formative study that identified three pri-
mary user needs when comparing sequences in a group 
travel planning task. Based on these needs, we designed 
a research prototype, TWINE, which provides visual sup-
port to satisfy these needs, and allows users to compare 
sequences and reach a consensus (see Fig. 1). Through a 
within-subjects controlled user study of 45 participants, we 
evaluated the effect of this visual support in the consensus 
building process of groups. We found evidence that this vi-
sual support can increase the efficiency and effectiveness 
of the process. 

In short, the primary contribution of this work is to identify 
three design goals for a novel research prototype for CoSeq 
tasks through a literature survey and a formative study, and 
to evaluate its effects on the consensus building process in 
a group itinerary planning task. 

Formative Study 
Allowing members of a group to individually construct their 
desired sequence allows them to establish their prefer-
ences. Then, an effective design for the visual comparison 
of multiple sequences should facilitate the identification of 
similar or conflicting opinions within the group and support 
the consensus building process. However, designing such 
a visualization is challenging due to the difficulty in compar-
ing three or more sequences, in contrast to the comparison 
of only two [11]. To understand the effective design for the 
comparison of multiple sequences, we conducted a forma-
tive study. In the study, four participants were presented 
with wireframes of four different visualizations (see Table 1). 

These participants were undergraduate/graduate students 
with previous experiences in group travel planning. They 
were each tasked to compare the itineraries constructed 
previously by three fictitious travellers using any of the four 
wireframes and construct a sequence that would lead to the 
greatest total satisfaction from these three travellers. Us-
ing a think-aloud protocol, participants were encouraged 
to verbalize their thoughts and reasoning throughout the 
task. Through open coding, three high-level design goals 
were derived from the study. Below, “nodes” refer to loca-
tions included in an itinerary and “edges” refer to locations 
adjacent to another in the itinerary. 

G1: Provide an overview of similarities and a detailed 
view of differences. All four participants followed a pro-
cess in which they first identified all nodes and edges that 
were shared by two or more itineraries. For this purpose, 
they utilized the adjacency matrix and the list of nodes and 
edges which provided overviews of similarities. After iden-
tifying similarities, they relied on more detailed views, like 
the visualized edit distance, to identify conflicts within these 
similarities (e.g. a node included in all the sequences but 
with different connected edges in each). 

G2: Support the comparison of the ordering of nodes 
by both their edges and their relative positions in the 
sequences. With respect to ordering, participants utilized 
both the adjacency matrix and the list of nodes and edges 
to compare the sequences with respects to edges. Addi-
tionally, several participants utilized the visualized edit dis-
tance to compare the relative positions of nodes. By looking 
at the visualization of node move operations, participants 
recognized whether a specific node was more common at 
the beginning, middle, or end of the three given sequences. 

G3: Support interactions for the resolution of conflicts 
during the identification of conflicts. When identifying 
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Figure 5: The user can see 
information of each available 
location on the list, add a location 
to their sequence by clicking on a 
location entry, and remove them 
from their sequence by clicking on 
the entry again. 

Figure 6: Collaborative screen of 
the baseline version of our 
prototype which only juxtaposes 
the group members’ sequences, 
without providing the visual 
sequence comparison. 

Figure 4: In the collaborative screen, the user can see their group members’ sequences, with the nodes encoded in the unique color assigned 
to each member; compare sequences with the visual sequence comparison; and discuss with their group through the simple chat interface. 

conflicts, participants expressed a need to understand how 
the conflicts could be resolved. Specifically, they wanted 
to explore the effects certain modifications to a sequence 
would have to the congruity between that sequence and the 
others. However, none of the four visualizations effectively 
afforded for this type of exploration. 

To summarize, while existing visualizations like adjacency 
matrix and edit distances could be useful for comparison, 
visualizing effects of potential modifications to resolve con-
flicts was harder to perform using existing work. 

TWINE: A Prototype Implementation 
To afford these three goals together, we created TWINE, a 
Web-based CoSeq prototype designed for travel itinerary 

planning. TWINE embeds the proposed process of indi-
vidual to collaborative sequencing. Additionally, it provides 
a visual sequence comparison technique, designed with 
the design goals derived from our formative study, to sup-
port the identification of similarities and conflicts in opinion 
during the collaborative phase. The system consists of an 
individual screen and a collaborative screen. 

Individual Screen 
In this screen (shown at the top of Fig. 1), the user con-
structs their preferred sequence or travel itinerary. The in-
dividual screen includes three components: a list of loca-
tions, a sequence space, and a map. The user can browse 
through the available locations in the list (see Fig. 5) and 
add them to their sequence. Added locations are shown in 
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Study Setup 

Task. First, individually 
construct their preferred 
sequence. Then, compare 
sequences in their group and 
discuss to reach a consensus. 

Conditions. Groups 
performed the task twice with 
different conditions; the order 
was counterbalanced. 
(a) Control condition: a 
baseline version of our 
prototype (see Fig. 6). 
(b) TWINE condition: a 
version with the visual 
sequence comparison. 

Dataset. For fair comparison, 
two US cities, similar in terms 
of area and population, were 
chosen: Portland & Denver. 
For each, a dataset of 20 
locations was prepared. All 
participants reported to have 
never visited or lived in either 
city. 

Participants. 15 groups of 3 
friends from a local university 
were recruited using online 
forums (age M=22.0, 
SD=1.81, 37 males and 8 
females) and were 
compensated $20.00 for a 
90-minute dispersed 
synchronous task. 

Table 2: Details on study setup. 

the sequence space (see Fig. 2) and the map (see Fig. 3). 
Once satisfied with their sequence, the user can proceed by 
submitting their sequence. 

Collaborative Screen 
After all members have submitted their sequences, the 
group proceeds to the collaborative screen (shown in Fig. 4). 
In this screen, the user can see their members’ sequences 
and modify their own sequence. Modifications are displayed 
in real-time to their group members. The group reaches a 
consensus once all of the members’ sequences have been 
modified to be the same. To facilitate comparison of the 
sequences, our visual sequence comparison technique is 
embedded to the sequence space in this screen. 

Visual Sequence Comparison 
Our visual sequence comparison interface consists of three 
main components: visual awareness of shared nodes, or-
dering details on hover, and list of missing nodes. 

Visual Awareness of Shared Nodes: The user is provided 
with visual awareness on which of their group members 
also selected a node that is included in the user’s sequence 
(G1). Other group members are represented as a stub to 
the right of each node, encoded in the respective member’s 
assigned color if that member also included that node in 
their sequence (Fig. 4(a)). Otherwise, the stub is colored 
gray. If a node was selected only by the user, the node is 
colored gray to emphasize a significant difference (G1). 

Ordering Details on Hover: By hovering on a node in their 
sequence, the user can evaluate similarities and differences 
for a node’s relative position and edges. For relative posi-
tion, hovering on a node highlights that node in the other 
members’ sequences (Fig. 4(b-1)). This shows if a node is 
positioned closer to the start, middle, or end of a members’ 
sequence (G2). For edges, hovering on a node displays to 

its right, information (Fig. 4(b-2)) about which member has 
different adjacent nodes and what those nodes are (G1, 
G2). It also informs the user of which actions should be 
taken to match other members’ edges (G3). 

List of Missing Nodes: The list of missing nodes dis-
plays nodes selected by other members but not by the user 
(Fig. 4(c)). The list of missing nodes also supports visual 
awareness of shared nodes using colored stubs belonging 
to other members (G1). The user can easily include any 
of these nodes in their own sequence by clicking the plus 
button next to each of these nodes (G3). 

Evaluation 
To evaluate the effects of TWINE, we conducted a within-
subjects study. For details on the study conditions and par-
ticipants, see Table 2. Through a survey and a NASA-TLX 
questionnaire, we investigated the effect with respect to 
two metrics: efficiency (time and effort needed to reach a 
consensus), and effectiveness (satisfaction towards the pro-
cess and outcome). Overall, most participants expressed 
a preference for the TWINE condition (see Fig. 7) and our 
findings indicate that this was due to the effect of the visual 
support on the efficiency and effectiveness. 

With regards to efficiency, our study results showed ev-
idence that visual support may decrease the amount of 
effort needed for consensus building (see “Perceived Effi-
ciency” and “Aggregated NASA-TLX” in Fig. 8). Our survey 
responses indicate that this higher efficiency was due to the 
visual support facilitating the identification of sequence sim-
ilarities and differences, which participants interpreted as 
similarities and differences in opinion. 

For example, G7P2 responded that agreement in opinions 
could quickly be identified: “It was easy to see, at a glance, 
all the locations that I shared with my group and this helped 
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Figure 7: 38 participants stated 
that they preferred the TWINE 
condition, 6 had no preference, and 
1 preferred the Control condition. 

Figure 8: Wilcoxon signed-rank 
tests of the survey responses 
showed that, in the TWINE 
condition, participants’ perceived 
efficiency was significantly higher 
(z=28.0, p<.000) and cognitive 
workload, calculated through 
NASA-TLX, was significantly lower 
(z=327, p<.05). Perceived 
effectiveness (z=20.0, p<.000) was 
also significantly higher in the 
TWINE condition. 

me save time in finding agreements in opinion.” Addition-
ally, G8P2 mentioned that the color encoding of nodes led 
them to change their opinions: “The locations that only I se-
lected were colored grey. This helped me to quickly reduce 
my differences in opinion.” By highlighting major points of 
agreement and disagreement, the visual support allowed 
group members to focus on the main conflicts hindering 
consensus and to easily understand how to adjust their 
opinions to resolve these. 

Additionally, our results suggest that visualizing significant 
agreements or disagreements can also increase the satis-
faction towards the process and outcome (see “Perceived 
Effectiveness” in Fig. 8). This can be attributed to the visual 
support’s influence on the structure of the groups’ discus-
sions, which was noted by many participants. 

Most participants described a similar discussion structure 
in which they first decided to fix the nodes shared by all 
the members and then discussed including the remain-
ing nodes: “We tried to include all the locations that all 
our members selected. Then, we discussed to decide on 
whether to include those locations that were only selected 
by one or two members. (G10P3)” By fixing nodes shared 
by all, groups could ensure equal base satisfaction towards 
the final outcome. Discussing all nodes selected by at least 
one member allowed each member to express all of their 
opinions with respect to selecting a new node. Granting 
opportunities for the expression of opinions or concerns is 
essential for effective consensus [6]. Therefore, the discus-
sion structure encouraged by the visual support could have 
resulted in a more satisfactory process and outcome. 

Conclusion 
Our study allowed us to gain evidence on the benefit of the 
visual sequence comparison on the consensus building 

process in a CoSeq task. By facilitating sequence com-
parison, the visual support allowed groups to reduce their 
perceived efforts by focusing on the conflicts in opinion that 
were mainly impeding consensus. Additionally, it encour-
aged a discussion structure, which was perceived to be 
effective, through which the level of satisfaction shared by 
group members could be maximized. 

We acknowledge a couple of limitations to our work. To 
control for group dynamics, we conducted our study with 
groups of three friends. However, the consensus building 
process depends significantly on the type of the group (e.g. 
strangers, co-workers, or family members) and its size. Ad-
ditionally, as our study was designed as a controlled lab 
experiment to control for understanding the effects of visual 
support, it may not replicate real world situations (e.g. asyn-
chronous and remote settings). Lastly, as our study focused 
on travel planning, these findings may not be generalizable 
to all types of CoSeq tasks. 

In this work, based on previous literature and a formative 
study, we show that user goals including visual sequence 
comparison and conflict identification for a CoSeq task of 
travel planning can not be met with existing visualizations, 
and a novel design that provides such support can lead to 
gains in perceived effectiveness and efficiency. With the 
findings from this study and consequent future studies, a 
more comprehensive understanding of the design space for 
CoSeq can be developed. 
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